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ed this work in 2010 but equipment failures have reduced its operating capacity. The 
NDA noted that “risks remain with the sustained performance of THORP and support 
plants over the next 7 years” that may require keeping open the option to “reprocess 
less than the full contracted amount of spent fuel in THORP in case it is needed.”138

Under the preferred option, approximately 4000 tons of unreprocessed AGR fuel will 
go into interim storage before final disposal in a geological repository, along with the 
high-level waste from reprocessing operations. The UK’s separated plutonium is to be 
kept in storage at Dounreay and at the new Sellafield Product & Residue Store facility, 
which received its first shipment in February 2011.139 This marked the beginning of a 
one-year active commissioning of the Sellafield store.140 Earlier plans called for pluto-
nium to be stored at Dounreay until 2075 and at Sellafield until 2120.141 

China. China has started to separate and store civilian plutonium following the com-
missioning of its first pilot reprocessing plant in December 2010 (Figure 7).142 The plant 
is located in Gansu Province and currently has a capacity of 50–60 tons of spent fuel 
per year and can be expanded to 100 tons per year. In its annual INFCIRC/549 report 
of civilian plutonium holdings for 31 December 2010, China declared a stock of 13.8 kg 
of separated plutonium “in product stores at reprocessing plants.”143 Previous Chinese 
plutonium declarations did not report a civilian stockpile.

Figure 7. A cooling pond at China’s pilot reprocess-
ing plant. The plant has the capacity of processing 

50–60 tons of spent fuel per year and began operat-

ing in 2011. The hot testing of the plant in 2010 

yielded 13.8 kg of separated plutonium, which China 

declared as its civilian stockpile. Source: news.cntv.

cn, 3 January 2011.144

In 2009, the China National Nuclear Corporation (CNNC) signed an agreement to ex-
plore the purchase of two Russian 800 MWe BN-800 fast breeder reactors and also plans 
to develop its own 1000 MWe Chinese Demonstration Fast Reactor (CDFR) design.145 
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India. In January 2011, Prime Minister Manmohan Singh inaugurated a new reprocess-
ing plant (the Power Reactor Fuel Reprocessing Plant-2 or PREFRE-2) at Tarapur.146 The 
new plant has a capacity of 100 tons of spent fuel per year. This adds to India’s three ex-
isting reprocessing plants, which recover plutonium from heavy-water reactor (HWR) 
fuel: Trombay at Mumbai (50 tons of fuel per year, commissioned in 1964), PREFRE-1 
at Tarapur (100 ton capacity, commissioned in 1977), and KARP at Kalpakkam (100 
ton capacity, commissioned in 1998). The Trombay plant is earmarked for reprocessing 
spent fuel from the plutonium production reactors. The other plants together would 
have separated 3.8 to 4.6 tons of plutonium from spent power-reactor fuel as of the end 
of 2011.147 

India has plans for a further expansion of its reprocessing capacity to provide startup 
fuel for a planned fleet of fast breeder reactors. A “fairly large” new reprocessing plant 
is said to be “nearing completion” in Kalpakkam; it is scheduled to be commissioned in 
2013.148 The Department of Atomic Energy announced in 2011 that it expects to build 
several larger reprocessing plants, “close to 500 tons per year,” over the next decade.149 
This includes an “integrated nuclear recycle plant,” incorporating both spent fuel re-
processing and high-level radioactive waste conditioning, to be located at Tarapur, and 
two additional plants at other sites.150 Reprocessing 1000 tons of HWR spent fuel annu-
ally would yield about 3.7 tons of separated plutonium per year.

India’s 500 MWe Prototype Fast Breeder Reactor (PFBR) is now expected to go critical in 
mid-2012. Construction started in 2004, and it was originally scheduled to be operat-
ing by 2010. There is some uncertainty about how long it may take after the reactor is 
completed for it to be commissioned.151 In principle, the PFBR could be used to produce 
more than 100 kg of weapon-grade plutonium per year, which would significantly in-
crease India’s rate of military plutonium production.152

Japan. In 2010, Japan’s stockpile of separated plutonium stood at 44.9 tons, which 
included 9.9 tons held in the country, 17 tons in the United Kingdom, and 18 tons in 
France.153 The local inventory has not increased since December 2009 because of prob-
lems during the start-up testing program at Japan’s Rokkasho reprocessing plant. The 
start of commercial operation has been delayed eighteen times; operation was origi-
nally planned to start by December 1997.

As part of the debate about Japan’s nuclear policy after the March 2011 disaster at the 
Fukushima nuclear power plant, the Japanese Government is reconsidering the future 
of its reprocessing and fast breeder reactor programs. In particular, the government is 
apparently considering closing down the troubled Monju fast breeder reactor.154

 
Japan’s science ministry has postponed a plan to restart the Monju reactor and run it at 
40% of capacity for a trial period.155 The cancelled Monju trial run was to be the first 
operation after an accident in August 2010, when a 3-ton piece of equipment fell into 
the reactor vessel.156 This accident came soon after the reactor was restarted in May 
2010 after a 14-year shutdown caused by a major sodium leak and a fire.157 The facility 
has been provided funds only for maintenance, with Japan’s Education Minister noting 
“we want to think about the role of Monju.”158 
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Appendix 1

Fissile Materials and Nuclear Weapons
Fissile materials are essential in all nuclear weapons, from simple first-generation 
bombs, such as those that destroyed Hiroshima and Nagasaki more than sixty years 
ago, to the lighter, smaller, and much more powerful thermonuclear weapons in arse-
nals today. The most common fissile materials in use are uranium highly enriched in 
the isotope uranium-235 (HEU) and plutonium. This Appendix describes briefly the 
key properties of these fissile materials, how they are used in nuclear weapons, and how 
they are produced.

Explosive Fission Chain Reaction 
Fissile materials can sustain an explosive fission chain reaction. When the nucleus of a 
fissile atom absorbs a neutron, it will usually split into two smaller nuclei. In addition 
to these “fission products,” each fission releases two to three neutrons that can cause 
additional fissions, leading to a chain reaction in a “critical mass“ of fissile material (see 
Figure A.1). The fission of a single nucleus releases one hundred million times more en-
ergy per atom than a typical chemical reaction. A large number of such fissions occur-
ring over a short period of time, in a small volume, results in an explosion. About one 
kilogram of fissile material—the amount fissioned in both the Hiroshima and Naga-
saki bombs—releases an energy equivalent to the explosion of about 18 thousand tons  
(18 kilotons) of chemical high explosives.

Figure A.1. An explosive fission chain-reaction 
releases enormous amounts of energy in one-mil-
lionth of a second. In this example, a neutron is 

absorbed by the nucleus of uranium-235 (U-235), 

which splits into two fission products (barium and 

krypton). The energy set free is carried mainly 

by the fission products, which separate at high 

velocities. Additional neutrons are released in the 

process, which can set off a chain reaction in a 

critical mass of fissile materials. The chain reaction 

proceeds extremely fast; there can be 80 doublings 

of the neutron population in a millionth of a second, 

fissioning one kilogram of material and releasing an 

energy equivalent to 18,000 tons of high explosive 

(TNT).
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The minimum amount of material needed for a chain reaction is defined as the criti-
cal mass of the fissile material. A “subcritical” mass will not sustain a chain reaction, 
because too large a fraction of the neutrons escape from the surface rather than being 
absorbed by fissile nuclei. The amount of material required to constitute a critical mass 
can vary widely—depending on the fissile material, its chemical form, and the char-
acteristics of the surrounding materials that can reflect neutrons back into the core. 
Along with the most common fissile materials, uranium-235 and plutonium-239, the 
isotopes uranium-233, neptunium-237, and americium-241 are able to sustain a chain 
reaction.

Nuclear Weapons
Nuclear weapons are either pure fission explosives, such as the Hiroshima and Nagasaki 
bombs, or two-stage thermonuclear weapons with a fission explosive as the first stage. 
The Hiroshima bomb contained about 60 kilograms of uranium enriched to about 80 
percent in chain-reacting U-235. This was a “gun-type” device in which one subcriti-
cal piece of HEU was fired into another to make a super-critical mass (Figure A.2, left). 
Gun-type weapons are simple devices and have been built and stockpiled without a 
nuclear explosive test. The U.S. Department of Energy has warned that it might even 
be possible for intruders in a fissile-materials storage facility to use nuclear materials 
for onsite assembly of an improvised nuclear explosive device (IND) in the short time 
before guards could intervene.

The Nagasaki bomb operated using implosion, which has been incorporated into most 
modern weapons. Chemical explosives compress a subcritical mass of material into a 
high-density spherical mass. The compression reduces the spaces between the atomic 
nuclei and results in less leakage of neutrons out of the mass, with the result that it 
becomes super-critical (Figure A.2, right).

Figure A.2. Alternative methods for creating a 
supercritical mass in a nuclear weapon. In the tech-

nically less sophisticated “gun-type” method used 

in the Hiroshima bomb (left), a subcritical projectile 

of HEU is propelled towards a subcritical target of 

HEU. This assembly process is relatively slow. For 

plutonium, the faster “implosion” method used 

in the Nagasaki bomb is required. This involves 

compression of a mass of fissile material. Much less 

material is needed for the implosion method be-

cause the fissile material is compressed beyond its 

normal metallic density. For an increase in density 

by a factor of two, the critical mass is reduced to one 

quarter of its normal-density value.
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For either design, the maximum yield is achieved when the chain reaction is initiated 
in the fissile mass at the moment when it will grow most rapidly, i.e., when the mass 
is most supercritical. HEU can be used in either gun-type or implosion weapons. As is 
explained below, plutonium cannot be used in a gun-type device to achieve a high-
yield fission explosion.

Because both implosion and neutron-reflecting material around it can transform a sub-
critical into a supercritical mass, the actual amounts of fissile material in the pits of 
modern implosion-type nuclear weapons are considerably smaller than a bare or unre-
flected critical mass. Experts advising the IAEA have estimated “significant quantities” 
of fissile material, defined to be the amount required to make a first-generation implo-
sion bomb of the Nagasaki-type (see Figure A.2, right), including production losses. 
The significant quantities are 8 kg for plutonium and 25 kg of uranum-235 contained 
in HEU, including losses during production. The Nagasaki bomb contained 6 kg of 
plutonium, of which about 1 kg fissioned. A similar uranium-based first generation 
implosion weapon could contain about 20 kg of HEU (enriched to 90% uranium-235, 
i.e. 18 kg of uranium-235 in HEU). 

The United States has declassified the fact that 4 kg of plutonium is sufficient to make 
a more modern nuclear explosive device. As the IAEA significant quantities recognize, 
an implosion fission weapon requires about three times as much fissile material if it 
is based on HEU rather than plutonium. This suggests a modern HEU fission weapon 
could contain only about 12 kg of HEU.

Figure A.3. A modern thermonuclear weapon usu-
ally contains both plutonium and highly enriched 
uranium. Typically, these warheads have a mass 

of about 200 – 300 kg and a yield of hundreds of 

kilotons of chemical explosive, which corresponds 

to about one kilogram per kiloton of explosive 

yield. For comparison, the nuclear weapons that 

destroyed Hiroshima and Nagasaki weighed 300 kg 

per kiloton.162
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In modern nuclear weapons, the yield of the fission explosion is typically “boosted” 
by a factor of about ten by introducing a mixed gas of two heavy isotopes of hydrogen, 
deuterium and tritium, into a hollow shell of fissile material (the “pit”) just before it is 
imploded. When the temperature of the fissioning material inside the pit reaches about 
100 million degrees, it ignites the fusion of tritium with deuterium, which produces a 
burst of neutrons that increases the fraction of fissile material fissioned and thereby the 
power of the explosion.

In a thermonuclear weapon, the nuclear explosion of a fission “primary” generates 
X-rays that compress and ignite a “secondary” containing thermonuclear fuel, where 
much of the energy is created by the fusion of the light nuclei, deuterium and tritium 
The tritium in the secondary is made during the explosion by neutrons splitting lithi-
um-6 into tritium and helium.

Modern nuclear weapons generally contain both plutonium and HEU (Figure A.3). The 
primary fission stage of a thermonuclear weapon can contain either plutonium or HEU 
or both (the last is known as a composite core or pit). HEU also is often added to the 
secondary stage as a ‘spark-plug’ to generate neutrons from a fission chain reaction to 
begin the conversion of the lithium-6 to tritium and to increase its yield. Natural or 
depleted uranium is also used in the outer radiation case, which confines the X-rays 
from the primary while they compress the thermonuclear secondary. Neutrons from 
the thermonuclear reaction also induce fission in the uranium, which can contribute 
one-half of the energy yield of the secondary.

A rough estimate of average plutonium and HEU in deployed thermonuclear weapons 
can be obtained by dividing the estimated total stocks of weapon fissile materials pos-
sessed by Russia and the United States at the end of the Cold War by the numbers of 
nuclear weapons that each deployed during the 1980s: about 4 kg of plutonium and 25 
kg of HEU. Many of the older U.S. and Russian strategic weapons had yields in excess of 
1 MT and may have contained more than 25 kg HEU. The lower yield thermonuclear 
weapons deployed today (typically around 100–500 kt) could contain 10–20 kg of HEU.

Plutonium HEU Yield Example

IAEA Significant Quantity (SQ) 8 kg 25 kg*

1st-generation gun-type weapon n/a 50 – 60 kg 20 kt Hiroshima

1st-generation implosion-type weapon 5 – 6 kg 15 – 18 kg 20 kt Nagasaki (6 kg Pu)

2nd-generation single-stage weapon 4 – 5 kg 12 kg 40 – 80 kt (levitated or boosted pit)

Two-stage low-yield weapon 3 – 4 kg Pu and 4 – 7 kg HEU 100 – 160 kt W76

Two-stage medium-yield weapon 3 – 4 kg Pu and 15 – 25 kg HEU 300 – 500 kt W87/W88

Two-stage high-yield weapon 3 – 4 kg Pu and 50+ kg HEU 1 – 10 MT B83

Table A.1. Nuclear weapon generations and 
estimated respective fissile material quantities. 
Warhead types are U.S. warhead-designations.  

The estimates assume about 18 kt per kilogram  

of nuclear material fissioned, a fission-fraction of 

50 % for a 2nd-generation and two-stage weapon, 

and a yield fraction of 50 % in the secondary from 

fission in the two-stage weapon. *The significant 

quantity specifies uranium-235 contained in highly 

enriched uranium.
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Production of Fissile Materials
Fissile materials that can be directly used in a nuclear weapon do not occur in nature. 
They must be produced through complex physical and chemical processes. The diffi-
culties associated with producing these materials remain the main technical barrier to 
the acquisition of nuclear weapons.

Highly enriched uranium (HEU). In nature, U-235 makes up only 0.7 percent of natu-
ral uranium. The remainder is almost entirely non-chain-reacting U-238. Although an 
infinite mass of uranium with a U-235 enrichment of 6 percent could, in principle, sus-
tain an explosive chain reaction, weapons experts have advised the IAEA that uranium 
enriched to above 20 percent U-235 is required to make a fission weapon of practical 
size. The IAEA therefore considers uranium enriched to 20 per cent or above “direct 
use” weapon-material and defines it as highly enriched uranium. To minimize their 
masses, however, actual weapons typically use uranium enriched to 90-percent U-235 
or higher. Such uranium is sometimes defined as “weapon-grade.” 

The isotopes U-235 and U-238 are chemically virtually identical and differ in weight 
by only one percent. To produce uranium enriched in U-235 therefore requires sophis-
ticated isotope separation technology. The ability to do so on a scale sufficient to make 
nuclear weapons or enough low-enriched fuel to sustain a large power reactor is found 
in only a relatively small number of nations.

Depleted uranium

Enriched uranium

rotor

bottom bearing

bottom scoop

baffle

top scoop

electromagnetic
motor

casing

tails

feed

product

center post

Figure A.4. The gas centrifuge for uranium en-
richment. The possibility of using centrifuges to 

separate isotopes was raised shortly after isotopes 

were discovered in 1919. The first experiments using 

centrifuges to separate isotopes of uranium (and 

other elements) were successfully carried out on a 

small scale prior to and during World War II, but 

the technology only became economically competi-

tive in the 1970s. Today, centrifuges are the most 

economic enrichment technology, but also the most 

proliferation-prone.
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In a uranium enrichment facility, the process splits the feed (usually natural uranium) 
into two streams: a product stream enriched in U-235, and a waste (or “tails”) stream 
depleted in U-235. Today, two enrichment technologies are used on a commercial scale: 
gaseous diffusion and centrifuges. All countries that have built new enrichment plants 
during the past three decades have chosen centrifuge technology. Gaseous diffusion 
plants still operate in the United States and France but both countries are switching to 
more economical gas centrifuge plants.

Gas centrifuges spin uranium hexafluoride (UF6) gas at enormous speeds, so that the 
uranium is pressed against the wall with more than 100,000 times the force of gravity. 
The molecules containing the heavier U-238 atoms concentrate slightly more toward 
the wall relative to the molecules containing the lighter U-235. An axial circulation of 
the UF6 is induced within the centrifuge, which multiplies this separation along the 
length of the centrifuge, and increases the overall efficiency of the machine signifi-
cantly (see Figure A.4 for an illustration).

Gaseous diffusion enrichment, invented during the Manhattan Project, exploits the 
fact that, in a uranium-containing gas, the lighter molecules containing U-235 move 
more quickly through the pores in a barrier than those containing U-238. The effect is 
only a few tenths of a percent, however, and the molecules have to be pumped through 
thousands of barriers before HEU is produced. 

A third enrichment method, electromagnetic separation, involves introducing a beam 
of uranium-containing ions into a magnetic field and separating it into two beams by 
virtue of the fact that the path of the electrically charged ions containing the heavier 
U-238 atoms is bent less by the magnetic field. This method of enrichment was used 
by the United States during the World War II Manhattan Project and attempted by Iraq 
in the late 1980s. 

Plutonium. Plutonium is an artificial isotope produced in nuclear reactors after ura-
nium-238 (U-238) absorbs a neutron creating U-239 (see Figure A.5). The U-239 sub-
sequently decays to plutonium-239 (Pu-239) via the intermediate short-lived isotope 
neptunium-239.

The longer an atom of Pu-239 stays in a reactor after it has been created, the greater 
the likelihood that it will absorb a second neutron and fission or become Pu-240—or 
absorb a third or fourth neutron and become Pu-241 or Pu-242. Plutonium therefore 
comes in a variety of isotopic mixtures.

The plutonium in typical power-reactor spent fuel (reactor-grade plutonium) contains 
50–60% Pu-239, and about 25% Pu-240. Weapon designers prefer to work with a mix-
ture that is as rich in Pu-239 as feasible, because of its relatively low rate of generation of 
radioactive heat and relatively low spontaneous emissions of neutrons and gamma rays 
(Table A.2). Weapon-grade plutonium contains more than 90% of the isotope Pu-239 
and has a critical mass about three-quarters that of reactor grade plutonium.
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Figure A.5. Making plutonium in a nuclear reactor. 
A neutron released by the fissioning of a chain-

reacting U-235 nucleus is absorbed by the nucleus 

of a U-238 atom. The resulting U-239 nucleus decays 

with a half-life of 24 minutes into neptunium, which 

in turn decays into Pu-239. Each decay is accompa-

nied by the emission of an electron to balance the 

increase in charge of the nucleus and a neutrino.

For a time, many in the nuclear industry thought that the plutonium generated in 
power reactors could not be used for weapons. It was believed that the large fraction 
of Pu-240 in reactor-grade plutonium would reduce the explosive yield of a weapon to 
insignificance. Pu-240 fissions spontaneously, emitting neutrons. This increases the 
probability that a neutron would initiate a chain reaction before the bomb assembly 
reached its maximum supercritical state. This probability increases with the percentage 
of Pu-240.

For gun-type designs, such “pre-detonation” reduces the yield a thousand-fold, even 
for weapon-grade plutonium. The high neutron-production rate from reactor-grade 
plutonium similarly reduces the probable yield of a first-generation implosion design—
but only about ten-fold, because of the much shorter time for the assembly of a super-
critical mass. In a Nagasaki-type design, even the earliest possible pre-initiation of the 
chain reaction would not reduce the yield below about 1000 tons TNT equivalent. That 
would still be a devastating weapon.

More modern nuclear weapon designs are insensitive to the isotopic mix in the pluto-
nium. As summarized in a 1997 U.S. Department of Energy report:163 “Virtually any 
combination of plutonium isotopes … can be used to make a nuclear weapon.” The 
report recognizes that “not all combinations, however, are equally convenient or ef-
ficient,” but concludes that “reactor-grade plutonium is weapons-usable, whether by 
unsophisticated proliferators or by advanced nuclear weapon states.”

For use in a nuclear weapon, the plutonium must be separated from the irradiated 
uranium and the highly radioactive fission products that it contains. Separation of the 
plutonium is done in a chemical “reprocessing” operation. With the current PUREX 
technology, the spent fuel is chopped into small pieces and dissolved in hot nitric 
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acid. The plutonium is extracted in an organic solvent that is mixed with the nitric 
acid using blenders and pulse columns, and then separated with centrifuge extractors. 
Because all of this has to be done behind heavy shielding and with remote handling, 
reprocessing requires both resources and technical expertise. Detailed descriptions of 
the process have been available in the published technical literature, however, since 
the 1950s.

Spent fuel can only be handled remotely, due to the very intense radiation field. This 
makes its diversion or theft a rather unrealistic scenario. Separated plutonium can be 
handled without radiation shielding, but is dangerous when inhaled or ingested.

Isotope Bare Critical Mass  
[kg]

Half Life
[years]

Decay Heat
[watts/kg]

Neutron Generation
[neutrons/g-sec]

Pu-238 10 88 560 2600

Pu-239 10 24,000 1.9 0.02

Pu-240 40 6,600 6.8 900

Pu-241 13 14 4.2 0.05

Pu-242 80 380,000 0.1 1700

Am-241 60 430 110 1.2

WPu (94 % Pu-239) 10.7 2.3 50

RPu (55 % Pu-239) 14.4 20 460

 

Table A.2. Key properties of plutonium isotopes 
and Am-241 into which Pu-241 decays. Data from: 

U.S. Department of Energy, “Annex: Attributes of 

Proliferation Resistance for Civilian Nuclear Power 

Systems,” in Technological Opportunities to Increase 

the Proliferation Resistance of Global Nuclear Power 

Systems, TOPS, Washington, DC, U.S. Department 

of Energy, Nuclear Energy Research Advisory Com-

mittee, 2000, www.ipfmlibrary.org/doe00b.pdf, p. 

4; see also, J. Kang et al., “Limited Proliferation-Re-

sistance Benefits from Recycling Unseparated Trans-

uranics and Lanthanides from Light-Water Reactor 

Spent Fuel,” Science & Global Security, Vol. 13, 2005, 

p. 169. WPu is typical weapon-grade plutonium, and 

RPu is typical reactor-grade plutonium.
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Appendix 2
Uranium Enrichment Plants

 

Facility Type Operational Status Safeguards Status Capacity [tSWU/yr]

Argentina

Pilcaniyeu Civilian Resuming operation yes 20 – 3000

Brazil

Resende Civilian Being commissioned yes 115–200 

China

Shaanxi Civilian Operating (yes) 1000

Lanzhou II Civilian Operating offered 500

Lanzhou (new) Civilian Operating no 500

France

George Besse I Civilian Scheduled for shutdown yes 10800

George Besse II Civilian Operating yes 7500–11000

Germany

Gronau Civilian Operating yes 2200–4500

India

Ratehalli Military Operating no 15–30

Iran

Natanz Civilian Under construction yes 120

Qom Civilian Under construction yes 5 – 10

Japan

Rokkasho Civilian Temporary shutdown yes (1500)

Netherlands

Almelo Civilian Operating yes 5000 – 6000

North Korea

Yongbyon ? ? no (8)

Pakistan

Kahuta Military Operating no 15–45

Gadwal Military Operating no Unknown

Russia

Angarsk Civilian Operating offered 2200–5000

 Novouralsk Civilian Operating no 13300

 Zelenogorsk Civilian Operating no 7900

Seversk Civilian Operating no 3800

United Kingdom

Capenhurst Civilian Operating yes 5000

United States

Paducah, Kentucky Civilian Shutdown postponed offered 11300

Piketon, Ohio Civilian Planned offered 3800

Eunice, NM Civilian Operating offered 5900

Areva Eagle Rock, Idaho Civilian Planned (offered) 3300–6600

GLE, Wilmington, NC Civilian Planned ? 3500–6000
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Appendix 3
Reprocessing Plants

Facility Type Operational Status Safeguards Status Capacity (tHM/yr)

China

Pilot Plant Civilian Operating (no) 50–100

France

UP2 Civilian Operating yes 1000

UP3 Civilian Operating yes 1000

India

Trombay Military Operating no 50

Tarapur-I Dual Operating no 100

Tarapur-II Dual Operating no 100

Kalpakkam Dual Operating no 100

Israel

Dimona Military Operating no 40–100

Japan

Rokkasho Civilian Starting up yes 800

Tokai Civilian Temporarily shut down yes 200

North Korea

Yongbyon Military On standby no 100–150

Pakistan

Nilore Military Operating no 20–40

Chashma Military Under construction no 50–100

Russia

RT-1 Dual Operating no 200–400

Seversk Dual To be shutdown after cleanup no 6000

Zheleznogorsk Dual To be shutdown after cleanup no 3500

United Kingdom

B205 Civilian To be shutdown after cleanup yes 1500

THORP Civilian Operating yes 1200

United States

H-canyon, SRP Converted Special Operations no 15
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Appendix 4
Civilian Plutonium Stockpile Declarations

France
(Addendum 5)

Japan
(Addendum 1)

Russia
(Addendum 9)

United Kingdom
(Addendum 8)

United States
(Addendum 6)

1996 65.4
30.0

5.0
0.0

28.2
0.0

54.8
6.1

45.0
0.0

0.2 15.1 0.0 0.9 0.0

1997 72.3
33.6

5.0
0.0

29.2
0.0

60.1
6.1

45.0
0.0

<0.05 19.1 0.0 0.9 0.0

1998 75.9
35.6

4.9
0.0

30.3
0.0

69.1
10.2

45.0
0.0

<0.05 24.4 0.0 0.9 0.0

1999 81.2
37.7

5.2
0.0

32.0
0.0

72.5
11.8

45.0
0.0

<0.05 27.6 0.0 0.9 0.0

2000 82.7
38.5

5.3
0.0

33.4
0.0

78.1
16.6

45.0
0.0

<0.05 32.1 0.0 0.9 0.0

2001 80.5
33.5

5.6
0.0

35.2
0.0

82.4
17.1

45.0 
0.0

<0.05 32.4 0.0 0.9 0.0

2002 79.9
32.0

5.3
0.0

37.2
0.0

90.8
20.9

45.0
0.0

<0.05 33.3 0.0 0.9 0.0

2003 78.6
30.5

5.4
0.0

38.2
0.0

96.2
22.5

45.0
0.0

<0.05 35.2 0.0 0.9 0.0

2004 78.5
29.7

5.6
0.0

39.7
0.0

102.6
25.9

44.9
0.0

<0.05 37.1 0.0 0.9 0.1

2005 81.2
30.3

5.9
0.0

41.2
0.0

104.9
26.5

45.0
0.0

<0.05 37.9 0.0 0.9 0.0

2006 82.1
29.7

6.7
0.0

42.4
0.0

106.9
26.5

44.9
0.0

<0.05 38.0 0.0 0.9 0.0

2007 82.2
27.3

8.7
0.0

44.9 
0.0

108.0
26.8

53.9
0.0

<0.05 37.9 0.0 0.9 0.0

2008 83.8
28.3

9.6
0.0

46.5
0.0

109.1
27.0

53.9
0.0

<0.05 37.8 0.0 0.9 0.0

2009 81.8
25.9

10.0
0.0

47.7
0.0

112.1
27.7

53.9
0.0

<0.05 36.15 0.0 0.9 0.0

2010 80.2
24.2

9.9
0.0

48.4
0.0

114.8
28.0

53.9
0.0

<0.05 35.0 0.0 0.9 0.0

  Inventory held in country      Foreign-owned (included in local inventory)

  Stored outside the country (not included in local inventory) 

Since 1997, nine countries (Belgium, China, France, Germany, Japan, Russia, Switzer-
land, the United Kingdom and United States) have been declaring annually and pub-
licly their stocks of civilian plutonium to the IAEA (INFCIRC/549). Russia does not in-
clude in its declaration excess weapons plutonium, whereas the United States does. The 
annual inventories (as of December 31st of the respective year) listed in the table are 
in metric tons. The declarations give the fissile material stocks at reprocessing plants, 
fuel-fabrication plants, reactors, and elsewhere, divided into non-irradiated forms and 
irradiated fuel. 
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